CECW
Technical Letter
No. 1110-2-239

DEPARTMENT OF THE ARMY
U.S. Army Corps of Engineers

Washington, DC 20314-1000
ETL 1110-2-239

15 September 1978

Engineering and Design
NITROGEN SUPERSATURATION

Distribution Restriction Statement

Approved for public release; distribution is unlimited.

Office of the Chief of Engineers
 washington, DC 20314

DAEN-CWE-HD
Engineer Technical
Letter No. 1110-2-239 15 September 1970
Engineering anc Design
NITROGEN SUPERSATURATION

1. Purpose. The purpose of this letter is to provide guianace for the evaluation and identification of those projects with hydraulic structures having the potential to produce nitrogen supersaturation.
2. Applicability. This letter applies to all field operating agencies having responsibilities for the design of Civil work projects.
3. References.
a. ER 1130-2-334
b. ER 15-2-11
4. Bibliography.
a. ER 1110-2-1402
b. EM 1110-2-1602
c. EM 1110-2-1603
5. Discussion.
a. Nitrogen supersaturation and associated fish mortality due to gas bubble disease has occurred at Corps of Engineers projects on the Columbia River in the North Pacific Division (NPD) and more recently at the Harry S. Truman project in the Missouri River Division. Nitrogen supersaturation can result at any hydraulic structure from entrained air introduced by the spillway-stilling basin action. As the flow is subjected to hydrostatic pressure in the stilling basin, a portion of the entrained air is driven into solution before it has the opportunity to rise to the surface and escape into the atmosphere. A potential problem situation will exist if the characteristics of the flow within or cownstream of the

ETL 1110-2-239
15 Sep 78
stilling basin are such that the flow does not have the necessary turbulence to degas or purge itself of the excess dissolvec nitrogen. Elow conditions below projects conducive to rapid equilibratior with the atmospnere are shallow, turbulent streams. The reaeration and gas transfer characteristics of deep, slow moving rivers or downstream reservoirs aze relatively small. Generally, Eish will not suffer from gas bubble disease so long as they swim in depths below 15 feet. At those depths the external and internal gas pressures on fish are approximately egual. If the fish swim to the surface, however, the internal gas pressure exceeds the external gas pressure on the fish resulting in gas embolism or gas bubble disease. The tolerance of Eish to levels of nitrogen supersaturation depends upon the time of exposure and the age and species of the Eisn; however, dissolved nizrogen levels referenced to suriace pressure above 110 percent are generally considered to se harmiul. (aigure l.)
o. The phenomenon of nitrogen supersaturation below hydraulic structures is complex and depencs upon a number of Eactors. Normally the problem of nitrogen supersaturation has been associated with aerated flows plunging into deep stilling basins with slow moving downstream Elow conditions. IE tne nycrauiic jump in the stilling basin is a Eree jump, sufeicient zursulence should be present to degas the flow so that dissolved nitrogen leveis reterenced to sursace pressure will rot exceec 110 percent. IE the hydraulic iuno is summerged, sne Elow may plunge to the bottom of the dasin. Hith summerged hydraulic jump blow condizions, the change in nomertum of spillway or outlet works releases aue to \equiv vopical 50 foos radius toe curie subjects the flow so a pressure about 2. 10 Eimes the hycrostatic pressure on the apron due to the downstream tailwater. The jump will become Fully submerged when the tailwater depth is greater than approximately l25 jercent of the theorerical d2 value. It snould be noted that roller bucket stilling basins are designed for tailwaters greater than 125 gercent of de. In general, iz Eor a given discharge the cailwater exceeds a depth of 25 Eeet and iz the tailwater depth is greater than 110 gercent oz cheoretical d 2 (parivali? submerged jump) and i三 Elow conditions downstrean of the grojectare not conducire Eor degassing the Elow, the potential for nitrogen supersazurarion exis5s and snould be investigated.
C. Vitrogen levels can de decermined by measuring dotal ョas content with a gas saturometer and subtracting diasolved

THEORETICAL SAFE AND DANGER ZONES FOR FISH
oxygen content measured or by using a calibrated gas chromato－ graph．Techniques to estimate the percentage of nitrogen supersaturation below a hydraulic structure have been developed $b y$ NDD and $b y$ the $0 . S$ ．Bureau of Reclamation（USBR）． Inclosure l gives a summary of the development and avaluation procedure for the NPD method．Inclosure 2 gives a sumary of the USBR method．The technique developed by NPD was based on projects in the Columbia River Basin．The spillways are all gate－controlled ogee crests and with the exception of The Dalles，they have similar stilling basin characteristics． The NPD method snould be used to evaluate the effects of structures similar to those in the Columbia River Basim．The coefficients for this technique are based on these voes of structures．The technique developed by the US3R is more general than the NPD technique anc utilized data irom a wider variety of nyaraulic structures．The USBR technicue should be used to evaluate the effects oE structures other than the Eyoe Eound in vPD．Both techniques compute downstrean nitro－ gen concentration values by considering such variables as upstream concentration，headwater and tailwater elevations， head loss，angle of．the jet，residence time of the ounoles， and pressure condicions in the basin．
d．IE measurements or estimates indicaこe tha＝a yoこenこial for nitrogen supersaturation problems exists，then detailed model studies of the oroject may be necessary to develoo alleviation measures．Assistance in the studies can be obeained Erom the Naterways Enperiment Station．Ahso，Eech－ nicai assistance can be ootained Etom ooth the Federal Interagency Steering Committee on Reaeration Research anai the Commiteeg on ivacer Quality（reference 3 b ）．Requests tor the sertices of eizner of these committees should be coorinazed corough agDa（DAEN－CNE－A）NASA CC 20314.

万．Action Requirec．Review all reservoir projects，Eollowing the procedures outined in Inciosures 1 and 2 ，to determine zotential Eor nizrogen sugarsaturation proolems uncer al2 operating condi＝ions including interim conditions during con－ struction．
a．Existing Projects．Report resules and proposed corrective Reasures in Annual Dirision Nacer qualif Repores （reference 3a）．
b．Projects under Rlanning，Design or Constuctior．Repor－ resules and progosed alleviation measures if recuired in
appropriate portions of Survey-Feasibility Reports, Design Memoranda, Detailed project Reports, etc.

FOR THE CHIEF OF ENGINEERS:

2 Incl
as

Amen 23 REEK
HOMER 3. WILIIS
Chief, Engineering Division Directorate of Civil works
derivation of the spillmay-stilling bas:in model*

Consider the conceptual representation of the stilling basin shown below.

CONCEFTUAL. REPRESENTATION OF SPILLWAY-STILING BASIN COMEINATION

The water parcel indicated in cross-section by the snaced area moves through the stilling basin, decelerating and increasing in height. It extends laterally the full effective width, w of the stilling basin as illustrated in figure 3 of the main report.

We now make the following assumptions for the water garcel and stilling basin:

1. For that length of spillway that is in operation at a given time, the discharge is uniform along the
*Taken from: "A Nitrogen Gas (N_{2}) Model for the Lower Columbia River, "Final Report, Water Resources Engineers, Inc., under contract to US Army Corps of Engineers, North Pacific Division, January 1971
crest (this is equivalent to assuming that the properties of the water pareal are constant along any line parallel to the spillway crest).
2. The value $z_{\text {of }}$ is the initial depth of the spill befors the jump. Ott is computad as:

$$
\begin{equation*}
z_{0}=\frac{a}{\nabla_{0}}=\frac{a}{\sqrt{2 g E}} \tag{An}
\end{equation*}
$$

where
Q = discharge per foot along the crost
$Z=$ total reservoir head above the stilling basin floor.
z. Phe only affect of the roller winch averlias the main flow is to increase the static pressure within tne water parcel by an amount ady.
4. A given mass of air 4 is antrained as discrate bubales into the watar parest ${ }^{\text {d }}$ at the point $=0$ and remains uniformly distributad within bha water garcel as it passes mrough the stilling basin.
3. The distribution of the mass of air among the various sucble sizes remains unchanged during the watar parcel's journey througn the stilling basin.
3. The dissolyed nitrocen within bne matar oarcal is unfiomly dismibuted.
7. Rate of nisrogen aissolution $\begin{aligned} & \text { if the watar gartel is } \\ & \text { in }\end{aligned}$ governed by fickian diffusion ${ }^{\text {EF }}$ as:

$$
\begin{equation*}
\frac{N}{Z}=x_{z} A\left(C_{z}-a\right) \tag{A>z}
\end{equation*}
$$

where

$$
\begin{aligned}
x & =\text { hne mass of dissolved nitrogen in she watap } \\
& \text { parsel. } \\
x_{z}= & \text { rata coefficient, }
\end{aligned}
$$

```
A = total surface area of the air bubbles
    contained in the water parcel,
C _ { E } = \text { effective saturation concentration of}
    dissolved nitrogen in the water parcel, and
C = actual concentration of dissolved nitrogen
    in the water parcel.
```

With these assumptions, we can now define the parameters M, A, and C_{E} in equation $A-2$ as functions of the location of the water parcel in the stilling basin.

Assumption 6 allows us to write the mass M as the product of the concentration σ and the volume of the water parcel,

$$
\begin{equation*}
M=(u y \delta z) C \tag{A-3}
\end{equation*}
$$

where w is the effective width of the stilling basin, i.e., $w=$ (number of gates open) x (width per gate).

The saturation concentration of a gas such as N_{2} or O_{2} that is only slightly solubie in water is governed by Henry's Law which states that the equilibrium or saturation concentration of the gas in solution is directly proportional to the pressure existing at the gas-liquid interface. In the water parcel the pressure E at an elevation z above the stilling basin floor is

$$
\begin{equation*}
\geq=\sum_{0}+\alpha_{0} u_{1}+\alpha(u-z) \tag{A-4}
\end{equation*}
$$

where $?_{0}$ is the atmospheric (or barometric) pressure, and the a parameters are the densities of the roller and main flow as shown in Figure A-1. Hence, the saturation concentration at any elevation z in the parcel is given as:

$$
\begin{equation*}
c_{3 c \hbar}=\left[P_{0}+a_{0} y_{1}+\alpha(y-z)\right] c^{*} \tag{A-B}
\end{equation*}
$$

Where C^{*} is the saturation concentration under one atmosphepg of pressure, In aquation A-5, the pressure tarm has untits of amospheras of jrossura. From aquation $A-3$, it is seen that C_{z} varies linearly with zo lit pollows that the average or effective saturation concentration, C_{3} in tha water parcel is the value of $C_{\text {sat }}$ at mid-depth, or at $z=y / 3$: Thus.

$$
C_{\Xi}=\left[?_{0}+c_{0} 1+a(y / 2)\right] c^{*}
$$

foting that $j=2-y$ gives the tinal form of C_{3} as

$$
\begin{equation*}
c_{z}=\left[0_{0}+a_{0}=\left(a_{0}-\frac{a}{6}\right) y_{1}\right] c^{*} \tag{A-3}
\end{equation*}
$$

The total surface area a of the air bunolas in the water parcel depencs ueon the total mass of air entratined and, upon the buole sige distribution. it is not unreasonable to expect that the entrained masz of air will be distributad among the various bubole sizes in a manner similar 0 ghas snown below.

$$
\begin{aligned}
& 3 \text { Fraction of total alr } \\
& \text { nass in the watar oarcel } \\
& \text { mish oudoles hauing a } \\
& \text { nass less than or equal } \\
& \text { to }=
\end{aligned}
$$

One voime y_{3} gian air bucole with masi x_{3} an be found from the idaal gas law:

$$
\begin{equation*}
v_{b}=\frac{m P T}{?} \tag{A-8}
\end{equation*}
$$

where

$$
\begin{aligned}
& m=\text { number of moles of air in the bubble, } \\
& P=\text { universal gas constant, } \\
& T=\text { absolute temperature, and } \\
& P=\text { the total pressure in the bubble. }
\end{aligned}
$$

In equation $A-8, m$ can be replaced by $n_{-} / 28.9$ where 28.9 is the molecular weight of air. The diameter \bar{c}_{b} and the area A_{z} of a sphere are given by:

$$
\begin{align*}
& z_{b}=\left(\frac{6}{\pi} v_{b}\right)^{1 / 3} \tag{A-9a}\\
& A_{b}=\pi c_{b}^{2} \tag{A-9b}
\end{align*}
$$

Now, combining equations $A-8$ and $A-9$, the following expression results for the surface area A_{b} of an air bubble with mass n_{b} :

$$
\begin{equation*}
A_{b}=\left(\frac{5 \sqrt{\pi} P m}{28.9}\right)^{2 / 3}\left(\frac{n_{b}}{P}\right)^{2 / 3} \tag{A-10}
\end{equation*}
$$

Thus, if the total air mass entrained per unit volume of water at Y_{0} is M_{A}, the total air bubble surface areas A^{\prime}, per unit volume of water is found from the bubble size distribution and equation $A-10$ as

$$
\begin{equation*}
A^{\prime}=\int_{0}^{n_{\max }} A_{A} \frac{\frac{d B}{\hat{a} n_{b}} \dot{n_{D}}}{n_{b}} \tag{A-11}
\end{equation*}
$$

or

$$
\begin{equation*}
A^{\prime}=\left(\frac{6 \sqrt{\pi} P T}{28.9 P}\right)^{2 / 3} M_{A} \int_{0}^{1}-1 / 3 a B \tag{A-12}
\end{equation*}
$$

Pinally, to get the total bubble suriace area in the water parcel it is necessary to integrate equation $A-12$ over the volume of the parce? wyaz, i, a. :

$$
\begin{equation*}
A=\iint_{\dot{D}=} A_{z} A^{\prime} \dot{\sim} \dot{\sim} \dot{z} \tag{A-T3}
\end{equation*}
$$

Apolying assumptions 4 and 5 and substituting for A from equation A oil 2 gives

Replacing 3 with equation $A-4$ and integrating,

$$
\begin{aligned}
& \text { Substituting a-a for aq gives one final form as }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (A) (5) } \\
& \text { quep } \\
& x_{i}=\frac{3}{2}\left(\frac{5-\pi}{23.9}\right)^{2 / 3} A_{i} x_{2}^{-1 / 3} 3
\end{aligned}
$$

$$
\text { It the sxdeassions for } 4, E_{2} \text {, and } A \text { from equation } A-3, \text { to } 7 \text { and }
$$

A-15 msoectupiy aro substitutad into the rata exprossions given in suaton toz, there rosulta

$$
\begin{align*}
& \left\{\left[z_{0}+\alpha_{0} D-\left(\alpha_{0}-\frac{\alpha}{2}\right)\right]_{c}-c\right\} \tag{A-17}
\end{align*}
$$

We can now write rate expression $\frac{d C}{d i}$ in terms of the location in the stilling basin by using the relationship

$$
\begin{equation*}
\frac{\partial C}{Z E}=\frac{d}{Z \dot{E}} \frac{\partial C}{\partial i}=v \frac{d C}{\partial m}=\frac{a}{Z} \frac{d C}{d x} \tag{A-18}
\end{equation*}
$$

where v is the velocity of the parcel and a is the discharge per unit width of the stilling basin. In addition, we define a system parameter K, which we will call the entrainment coefficient, as

$$
\begin{equation*}
Z=K_{L} X_{A}=\frac{3}{\alpha}\left(\frac{5 \sqrt{\pi} R}{28.9}\right)^{2 / 3}\left[T^{2 / 3} K_{L} M_{A} \int_{0}^{1} n_{B}^{-1 / 9} d B\right] \tag{A-19}
\end{equation*}
$$

Substituting equation $A-18$ and $A-19$ into $A-17$ gives the expression for the concentration change in the water parcel as

$$
\begin{align*}
\frac{d C}{\bar{z}}= & \frac{X}{G}\left\{\left[\underline{0}_{0}+\alpha_{0} D+\left(\alpha-\alpha_{0}\right)\right]^{1 / 3}-\left[\underline{p}_{0}+\alpha_{0} D-\alpha_{0}\right]^{1 / 3}\right\} \\
& \left\{\left[\Xi_{0}+\alpha_{0} D-\left(\alpha_{0}-\frac{\alpha}{2} z\right)\right] C^{*}-C\right\} \tag{A-20}
\end{align*}
$$

The solution is obtained as follows. Evaluate the pressure terms at the midpoint of the stilling basin $y=\frac{D+Y_{0}}{2}$ to obtain

$$
\begin{equation*}
\frac{\bar{\sum}}{\bar{z}}=\frac{K}{q}\left\{\left[\overline{\underline{Z}}+\frac{\alpha}{4}\left(D+y_{0}\right)\right]^{1 / 3}-\left[\bar{P}-\frac{\alpha}{4}\left(D+Y_{0}\right)\right]^{\gamma / 3}\right\}\left\{\bar{z} C^{*}-c\right\} \tag{A-27}
\end{equation*}
$$

ETI 1110-2-239
15 Sep 78
where

$$
\overrightarrow{\vec{b}}=z_{0}+\frac{a_{0}}{\frac{1}{b}}\left(0-z_{0}\right)+\frac{a}{4}\left(0+z_{0}\right)
$$

Now $18 t$

$$
\begin{equation*}
\overline{a^{2 / 3}}=\left[3+\frac{a}{4}\left(0+z_{0}\right)\right]^{1 / 3}-\left[3-\frac{a}{4}\left(D+z_{0}\right)\right]^{1 / 3} \tag{A-22}
\end{equation*}
$$

Rewriting equation $A-21$, with these substitutions gives
mich has the solution

$$
\begin{equation*}
\theta=36+x e^{-\frac{2}{4}} \overline{3 / 3}= \tag{A}
\end{equation*}
$$

Fhatuating equation $A-34 a t z=0$, where C equals the forooay concencatiton
 ne soillway-stilling basin model as

DEF INIIION SKETCH

RESIDENCE TME $=t_{R}=W D L / Q_{S}=D L / q \approx L / V_{L}$
TOTAL HEAD LOSS $=h_{L}=A-D-h_{V}=H-\left(D+v_{L}^{2} / 2 g\right)$
ENERGY LOSS RATE $=E=h_{L} / t_{R}$

N_{2} CONCENTRATION AT EXD OF STILIING BASIN, L

$$
\begin{aligned}
& C_{S \cdot}=\bar{P} C^{*}-\left(\overline{P C} C^{*} C_{F}\right) \exp \left(-\frac{R}{q} L \overline{\Delta P}^{1 / 3}\right) \\
& \overline{S T}^{1 / 3}=\left[\bar{P}+\frac{\alpha}{4}\left(D+Y_{0}\right)\right]^{1 / 3}-\left[\bar{P}-\frac{\alpha}{4}\left(D+Y_{0}\right)\right]^{1 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{20}=a E^{b} \text {. } a \neq b \text { are empirically determined from observed data. They } \\
& \text { are shown below: }
\end{aligned}
$$

MODEL COEFEICIENTS

PROJECT	c	a	b
Little Goose	1.00	0.09	2.45
Lower Monumental	1.00	0.09	2.45
Ice Earbor	1.00	0.30	1.00
MeNary	1.00	1.00	2.00
John Day	1.00	0.20	2.:0
The Dalles	0.50	0.80	2.30
3onneville	1.00	1.90	1.00

I/ Developed by Nater Resources Engineers, Inc. for the CeFos in 1971.

PhE OALLES

LOWER GRANITE

:

MeNARY

MORMAL TW, 5R 25E
El 238.5> \qquad

JOHN DAY

FREDICTION OF DISSOLVED GAS AT HYDRAULIC STRUCTURES 1 by Perry L. Johnson ${ }^{2 /}$ and Danny L. Ring ${ }^{3 /}$
Introduction
With the increased interest in the effects of hycraulic structures on the Jissolved aas concentration of the flow, it becomes cesirable to be abie to gredict how particular structures ooerating uncer soecific conditions will chance the dissolved oas concentration.

At existing structures a predictive ability would enable the facility operator to select the method of release that would have the most cesirable effect on the dissoived aas concentration of the flow. Prototype cata indicate that $=$ fe change in the dissolved oas concentration is dependent on the type of struczur through which the flow oasses, the macritude of the discharse, the barometric pressure, and the water temperature. To establish an operating oriteria for each structure based on actual measurement of resulting dissoived gas concertrations would be a difficult task. A oredictive ability coulc yield an understandinc of a structure's potential and allow presaration for the oossit consequences, even if the structure had never oderated.

Also, with a predictive ability designers would mave an acditionai factor which could be considered in structure selection. Depencino on the situation. it is conceivabie that the dissolved aas octential micht even concrol the destan. Planners could also use a predictive ablity to evaluate the sotentia effects of a sincle hydraulic structure, or a series of nydrawitc structures, on a river.

Initially, the dissolved cas concentration above the structure (both oxygen anc nitrocen) is equal to the concentration established by the infiowinc stream. The nitroaen, being relatively inert, will maintain this concentration for duite some time. The oxyoen, however, eszecially in the lower deams of a resevoir, may be deoleted from the decaying of oroanit material. Thus, if water is released it may be low in dissolved oxygen and yet may conceivaziy De nich in dissoived nitrocen. Furthermore, the water may de hign in biocnemical oxycen demand (EOO) which would reduce the dissolved oxycen concentration in the stream telow the dam. Therefore, the analysis should be able to evaluate how effectively structures increase degleted gas concentrations as well as evaluate whether supersaturated conditions miant be created.

Such oredictive methocs have been develooed for the spillwavs of the U.S. Arry Coros of Enaineers dams on the Columbia River (1). host of these structures are geometrically similar. They are low head, run-of-the-river structures, with ataerontrolled ogee soillwavs. The stillino basins are also of similar desion. This similarity enatled the deve:ooment of a oredicive ara"ysis shat is cuite satisfactory for the structures considered. The jureau of reclamation has few structures that corresoond to these columba Fiver dams. In general, Rureau structures vary widely in type and size. Thus, a much more generalized precictive analysis is required for sionificant apoiication.

[^0]As a basis for development of the analysis, the following data were collected:

$3 y$ fall of 1073 the nonitoring prooram of the Bureau's Engineering and Resear. Canter had reached 16 sitas and had observed 24 structures in coeration. Forty-nine different ooerating conditions had been studied. In adtition the Pacific Vorthwest ?ecion of the Bureau of Reclamation has closely studied Grand Coulee Jam and made observations at 35 other sites. The voper missouri ?egion of the Jureau has derformed monttoring at yellowtai A Fteroay Dem, Combiner, these data provided an adequata base from which the prediceive malys:s coulc se developed.
and:usis
The orocess of gas transfer is described by the equation:

$$
C(t)=C_{s}-\left(C_{5}-C_{0}\right) e-k t
$$

anere $\mathrm{Ct}=$ final dissolved cas concentration
= saturation concentration
= initial concentration
= a constant of prooortionality
= time

strueture is located, with daily fluctuations that result from atmospheric conditions. The effects caused by daily fluctuations in atmospheric pressure are not large but they may be significant and should be considered in the evaluation of C_{s}. In this analysis measured barometric pressures were used when available. If measured values were not available a standard atmosznere was assumed and barometric pressures were comoutec according to eieva=ion

The dedth of water over the flow in which gas is deing dissolved is generaly dependent on the depth of water in the stilling basin. Thus, variations in the tailwater elevation will have some effect. Throughout this analysis a water deoth equal to two-thirds of the basin depth was used to compute saturas tion concentrations. It was thought that initially the fairly comoct jes from a spillway or outlet would penetrate to the floor of the stilling basin. The flow would then be deflected downstream and out of the basin. As the for moved trrough the basin it would be diffused and its velocity reduced. This difíusion would oe linear and result in a triangular pattern with the average cepth through the diffusion being two-thirds of the total basin ceoz Bucbles rising from the flow and incomplete flow oeretration wouid tenc to recuce this average depth, but the two-thircs depth was considered represミraztive and therefore used in the analysis. A major ocint of supoory for the two-iniros depth assumbtion is the fact that later aodlactions proved tre assumbtion reasonable. If the flow being studied does not penetrate to the botiom of the pool the maximum death of flow penetration may be used in in is caiculation in place of the basin depth

Evaluation of C_{S} is achieved by summing the barometric prossure and two-thirea of the basin depth (expressed in mm of Hg) and dividing this total pressure standard atmospheric pressure (760 mm of Hg) to obtain the average absolute pressure on the dissolving buboles in terms of atmospheres. This average absoiute pressure is then multiolied by the dissolved gas saturation concentra. tion a: sea level, for the desired water temperature, to obtain C_{s}.

The next parameter from ecuation 1 to be considered is the tine, t. it is representative of the length of time that the inflowing jet with entrained air is uncer pressure in the stilling basin and, thus, the length of time tha: gas is being dissolved in the flow. Consideration of time revealed two cossitie limitations that could control its value. First, it would seem that given sufficient time the entrained air bubbles would rise out of the flow and end the dissolving of gas. In some cases it would seem that an evaluation of this budile rise time could be used to represent time. On the other hand, situations might occur where the flow with entrained air would pass through the basin and be deflected to a shallow depth in a fairiy short time. Therefore. the actual length of time recuired for the flow to pass through the basin coude rogrosent t. During this analysis the assumozion was mace that either of these time periods mignt be critical in spectio stuations. For fach fow condition and structure studied, t was evaluated for both limitations. Fhe smaller of the two comouted values was considered apolicable to the particular situation and was used in the remainder of the analysis.

3ubtie rise time: - Evaluation of t based on the bubble rise time, t_{1}, wouic se, if strictly pursued, a very comolex computation which would probatiy produce questionable results. The vertical dimension of the jet (thickness of jet that the bubble would rise through) is never constant. The time, t, based on bubble rise time, t_{1}, was evaluated by dividing the calculated vertical

ETL 1110-2-239
15 Sep 78
thickness of the jet at the taliwater surface by the terminal rise velocity the bubole. By trial and error, it was determined that an assumed 0.028-i ($0.7-\mathrm{mm}$) fiameter huhble with a theoretical teminal velocity of 0.606 it. $(0.2 \mathrm{~m} / \mathrm{s})$ yielded the most consistant. results with respect to observed oro. conditions. Also, when an analysis was develooed that oredicted k fequapion from two dirensionless parameters, it was sound that the 0.020.inchodimeter bubole yieted gredicted yalues $0^{*} k$ that were consistent with the oredicad yalues of k based on bhe basin retention time.

Zasin retention time, - Combutation of the flow retention time, ez, in the basin is acconoilsned by dividina the oath lenath of the fow oy Fhe ayerace flow veloctty along the path. The path lencth is generally controlled oy $\quad \mathrm{O}$ basin snade. The oath length is the distance from the oont at with the \dot{f}. enters the tailiatar oool to the point at wich the mayority of the flow is directed towart the surface and, thererore, into a lower oressure zone. large portion of the fiow is deflectad uoward at a coint by beffe aiers, for exampie, this point would be considered the end of the oath

To comoute the averace flow yelocity over the oath lencth, zhe firs s:at is to dotain the jet yeloctit at bhe taimater suriace for at the start of an
 averace flow relocity, the velocity at the end of the oath must oe sund. fins is cone thrcuch the use of fioure t with is a summary of information from studies of jet diffusion oy Yevdjevich (2) and tenry (3). مbservatiorn velocity distributions in fet diffustons indicates that half of the maximum veiocity would be an anoroximation of the fet's averace velocizy at the or the flow zath. This averace veloctey miont aliso be avaluated oy jubiong
 conolete difision of the fet. he tarcer of the comouted velocties shoidu be used, since the averace jet velocity at the and of the oath oudu ze atoner, but oot iower than the averace relocity trouch the tyl? cross sect

 overatira under a oursicuiar concition, to zissolye gas. \therefore is rooresants. Jt the decree of air entraument and the rate at wnicn boe watar at one gas-idque intariace is replenisned.

reservoir surface and the withorawals are made from deep in the reservoir, the measured values of the initial dissolved gas concentrations, CI, are probably more accurate for nitrogen than oxygen. Even though dissolved nitrogen data were used as a base for the analysis, application of the analysis for observed prototype concitions indicates that resulting dissolved oxygen levels may alsa be predicted.

Figure 2 shows that the value of k is cependent on two oarameters. The first is Hy/X, the velocity head, Hy, at the tallwater surface diviced by the flow path length x. h_{v} / x is an energy gradient parameter for the flow; it relates the amount of energy in the flow to the path length in the basin over which the energy is dissipated. The greater the value of $H v / X$ the more turjulant the basin, flow and the larger the resulting k value. The path length used corresponds to the value of t selected. If ta is applicable, then the value used for X would be the path length used to eveluete ta. Eut. if it is aoolicatle, the path length is adjusted to determine the effective path lencth for the time interval, that is, the lencth of time the vucolos remain in the jet. Flow deceleration is assumed linear and the ratio of tit? is multiplied by the total veloctity drop to detemine the velocity drop along the adjusted path length. The average velocity along the acjusted path is then computed (initial veiocity minus one-nalf the velocity drod) ara muitiolied by t_{1} to determine the adjusted path length.

The other parameter on which the value of K is based is a ratio of the shear perimeter of the jet to the jet's cross-sectional area at the taliwater surface. This term is a measure of the jet compactness and shape. The shear perimeter for a jet is defined as the length of the jet's perimeter over whica shearina action is occurring between the jet and the water of the stilling basin 200 . For a free jet plunging into a pool the shear perimeter woulo ecual the total perimeter of the jet, while for a flow passing down a chute solliway and into a basin the shear perimeter would be the chute witth at the こalmater surface. Situations exist where the walls of the stilling bas:n ar: offset from the jet entering the basin. If this offset is smali, questions nay arise as to whether the sides of the jet should be included in the shear perimeter. This is a judgment factor and is prodably best handied by indivoual consideration. Another common structure that might raise a similar question would be a hollow jet valve discharging into a cool. Although the flow would have a ring-shaped cross-section, only the outside perimeter shouid be included in the evaluation. In general, if it appears that significant shear will occur along the section of perimeter in auestion then those lengths should be included in the analysis.

With the evaluation of K from ficure 2 , ecuation 1 may be applied and the fine: dissolved gas concentration, C(t), determined. The orototype data were used axtensively so evaluate the coeficicients that are anoliec througnout the analysis. This emoirical aozroach is mandatory because of the comolexty az the flows being considered. Very few of the situations studied have dearly defined flow conditions that are well suited for direct ana!ysis. fot only are the jets that leave the soillway chutes, the valves, and the gates often quite complex, but the stilling basir jools are equally complex. fny analysis of these flow conditions would be auite involved and the accuracy would be Questionable. However, the coefficients resulting from this analysis do have a rational basis and are representative of the various ahysical parameters. The coefficients can be interpreted to yield additional insight into the sionificance of the various factors.

Although some entrainment of air is needed for the dissolved aas uptake to occur, the amount of entrained air required seems to be quite small. At sp of the prototype structures releases were exposed only briefly to the air. some of these cases the water surfaces of the releases were also relativel. smooth. Thus, it is assumed that little air was entrained. This assumotion was verified by the small auntities of air that were coserved returning to the talmater suriace. However, in some instances, gne structures wion litul aczarent air Entraiment were amona the worst in crating sucersaturesed contitions.

Examole 2oolication
Inciuded with the examole is a drawing of the structure (figure 3) and photo. graons (ticure 4) of operation. The comoutations are cescribed steo oy stev. A!l critical Doints and all jucoments or adoroximations are discussed and Ene resules of the analysis are comoared to actual field findings. Rasults are also included for examplas for wich the calculations are not shown for as Gions between the observed and calculated dissolved gas concentrations aty be sfoributad to several factors. first, and probably one of the mos: imoorant,
 sore structures wh? flt the analysis batter than dohers and sore soructuras will yield nore accurate grediced resulis. A second sioniticant sounce of farysion would be errors in measurino the prototyde dissolved jas concentrations. The chemical analyses used are not comoletely accurate, but even more imoortant, samplas may be collected from reoions that are not reorasentattye pf the sotal flow. Extreme errors of this sort may or may not be coy ous. sEvers: cases, : wo or more readinas mera dyallatle which qaye some add:0 issurance. Yariations due to errors in data collection hay be smely or to.
 aso result in some error, sut this errar should be smell. Al? factors ons tered, the results are iery encouraging.

 Earametric oressu-2 = 377 om Ha atear temperature = $4.3^{\circ} \mathrm{O}$
2scnarge $=3550$ = 3.5 ($100 \mathrm{~m}^{3} / \mathrm{s}$)
 zeservoir dissolvec oxysen concentrazion = Es oercent

the stilling basin pool is short and unobetructed. Because of the changing slope of the flow surface as it enters the stilling basin, the angle of penetration was approximated to be 25° below horizontal. The basin depth of $22 \mathrm{ft}(5.7 \mathrm{~m})$ was computed for the deepest portion of the pool. Finally, the flow path length, x, of $95 \mathrm{ft}(29 \mathrm{~m})$ is approximately the distance from the point where the jet would attain significant penetration to the end sill of the basin. It was reasoned that at the end sill a large portion of the flow will be ceflected upward, the flow will no longer be under the higher pressur: and dissolving of gases in the basin will be complete. These acoroximations are quite rough, but atterots to refine the evaluations wculo yielc on y slignt imorovements and would call for and indicate unwarranted accuracy.

The absolute dissolved nitrogen concentration in the reservoir is evaluated a the first step in the analysis. This is accomplished by referring to appropr ate standard tables and obtaining the nitrogen saturation concentration for the specific water temperature (4.4 © \mathbf{C}) and multiplying it by the relative reservoir dissolved nitrogen concentration (104 percent).

$$
C_{I}=(1.04)(20.7)=21.5 \mathrm{mg} / \mathrm{L}
$$

Next the ootential absolute dissolved nitrogen concentration for the stilling basin is computed. As stated before, it is depencent on the barcmetric pressure, water temperature, and basin depth. Two-thircs of the basin depth is assumed as the average depth over the flow while the gas is being dissoive Using this approximation an average pressure on the flow !in atmospneres is comouted anc multiolied by the absolute dissolved nitrogen concentration cotained earlier.

$$
C_{s}=\frac{677+2 / 3(22)(304.8 / 13.55)}{760}(20.7)=27.4 \mathrm{mg} / \mathrm{L}
$$

This term has been adjusted to reflect the barometric oressure and, thus, the structure's elevation. If the barometric pressure is unknown, a standard atmosenere may be used.

Two of the terms (C_{s} and C_{1}) of equation $1:$

$$
\sigma(t)=C_{S}-\left(C_{S}-C_{T}\right) e-k t
$$

have now been evaluated. The time, t, that gas is being dissolved, is the next tem of interest. The bubble rise time, ti, is evaluated first. To do this, the vertical dimension of the jet at the taliweter surface is found. The 28 -foot velocity head yields a velocity of $42.5 \mathrm{ft} / \mathrm{s}(13.0 \mathrm{~m} / \mathrm{s})$. The discharge is then divided by the velocity to octain a toial fiow cross sectional area for three gates.

$$
3550 / 42.5=83.5+52(7.8-2)
$$

Assuming ecual flow through each results in a flow cross sectional area of 27.8 ft2 (2.6 m^{2}) for a sincle gate. When equal flow conditions are assumed for the gates, the analysis of each individual gate is icentical and, thus, the analysis of the flow for only one gate will predict the performance of the entire structure. If the fic̣u cross sectional area is then divided by the qate width (8 ft) the flow depth is determined.
$27.8 / 8=3.5 \mathrm{ft}(1.1 \mathrm{~m})$

15 Sep 78

Since the flow is not horizontal the flow depth must be divided by the cosine of the angle of penetration to obtain the vertical dimension of the jet．

$$
3.5 / \cos 25^{\circ}=3.5 / 0.9063=3.9 \mathrm{ft}(1.2 \mathrm{~m})
$$

If this distance is then divided by the temind butbie velocity，a buoble rise time，t ，is cobained．
$t_{t}=3.3 / 0.696=3.5$ seconcs
The pencti of time，t ，is also evaluated by considering tee length of bine that ene flow is at an effective depth in the basin．To do this the curves fiours ：are used．First，the flow path lengtn，i，is divided by she flow depen，Ro．

$$
x / 3_{0}=95 / 3.5=27.1
$$

The Fow with（ho）is then divided by the flow deoth．

$$
\cos _{0} / 30=313.5=2.3
$$

Eigure 1 is then refarred to and the ratin of the naxitur yelocity，u， whin the velocity distribution at the and of the fow oath to the mita？ fiow yelocity，$\%$ ，is cotained．

$$
V_{-} / V_{0}=0.36
$$

0

$$
y_{7}=(0.26)(22.5)=25.2=6 / 5(4.7 \mathrm{~m} / \mathrm{s})
$$

$$
1=2.2-12-2=25.1=55 \square-3
$$

 ことか口ros yould be：


```
SOE.
```



```
:--a:
```


head, H_{v}, to the appropriate flow path lencth, X, is H_{v} / X. If the time interval used is based on basin retention time, the basin flow path lenath (evaluated from the basin geometry) is used. If the smaller time results fron the consideration of the bubble rise time then the flow path iength to be used is less then the basin flow path lenath. For the sample problem the time based on the basin retention time is the smaller so the initially deteminec path lencth of $95 \mathrm{ft}(29 \mathrm{~m})$ is used. Therefore,

$$
H_{y} / X=29 / 95=0.295
$$

For aoplication of figure 2, the second garameter that must be evaluated is the ratio of the shear jerimeter lenoth of the jet to the cross sectional area of the iet. For this problem the shear perimeter is the jet width plus the jet height for each side or

$$
8+3.5+3.5=15.0 \mathrm{ft}(4.6 \mathrm{~m})
$$

The cross sectional area has already been found to be 27.8 ft ? $\left(2.6 \mathrm{~m}^{2}\right)$. Thus the ratio is

$$
15.0 / 27.8=0.54
$$

The value of k is 0.1 from figure 2 . The user will note the possibility of interoolation error. All the terms may now be substituted into ecuation 1 ana a dissolved nitrogen concentration that is not corrected for barometris oressure is obtained.

$$
C(t)=27.4-(27.4-21.5) e^{-(0.1)(3.8)}=22.4 \mathrm{mc} / \mathrm{L}
$$

If this is then divided by the saturation concentration, the percent nitrogen saturation is ootained.

$$
23.4 / 20.7 \times 100=113 \text { percent }
$$

The ooserved value for nitrooen, N_{2} was also 113 dercent. To obtain a preticied absolute concentration, multioly the predicted percentace oy the azsoilite concentration adiusted for barometric oressure.

$$
(1.13)(677 / 760)(20.7)=20.8 \mathrm{ma} / \mathrm{L} \text { of } \mathrm{i}_{2}
$$

Considering dissolved oxyaen, we compute:

$$
C_{i}=(0.85)(12.9)=11.0 \mathrm{mc} / \mathrm{L}
$$

where $12.9 \mathrm{ma} / \mathrm{I}^{\prime}$ is the saturation concentration of oxycen at $4 . \mathrm{A}^{\circ} \mathrm{C}$.
A: so:

$$
\begin{aligned}
c_{s} & =\frac{677+2 / 3(22)(204.9 / 13.55)}{100}(12.0)=17.1 \mathrm{mo} / \mathrm{L} \\
& = \\
k & =3.8 \text { seconcs } \\
k & =0.1
\end{aligned}
$$

15 Sep 78
all of which follow from the nitronen calculations above．Aoplying eaua－ tion 1：

$$
C(:)=17.1-(17.1-11.0) \text { e }-(0.1)(3.3)=12.9 \mathrm{mg} / \mathrm{L}
$$

The gercent oxycen saturation calculated is：

$$
12.912 .9 \times 100=100 \text { zercent }
$$

The actua sbservec yatue for oxygen，O2 was also 100 percent．
in acoroximation of the percent total dissolved gas would ze：
$(100)(23.4+12.0) /(20.7+12.9)=105$ percent
This consiters nitrogen and oxycen，which together comprise over 90 percent of the total cissolved gas．

Several other examoles were calculated with the following resules：
zeructure

Solilnay with miler bucket，
threa cates ooeratina
Gute solimay into hyoraulic jumb des：n
\therefore AK＇ian ous？at arks four tis．
zarces：shrouch so illway
－ace－as ayorevit juro jas：

$\frac{\text { caculated }}{\frac{0}{2}} \frac{0}{201 \%}$
$1.51: 2$

19	145	1.7	30
152	152	さここ	：32
153	153	：	：
！こi	ここ	1.25	$こ 0$

$116 \quad 108$ $.2 \quad .1$

$100 \quad 2 \quad 20 \quad 2$


```
#)0きこミ品 シvail:0!e.
```



```
Con:`jsions
```


2. The basic equation developed to predict the resulting dissolved gas concentrations is:

$$
C(t)=C_{S}-\left(C_{S}-C_{I}\right) e^{-K t}
$$

where $C(t)$ is the dissolved gas concentration created by the hycraulic strutture, C_{1} is the dissolved gas concentration in the reservoir, C_{S} is the saturated dissolved gas concentration at a depth which is two-thirds of the maximum basin deptn, t is representative of the length of time during whion gas is being dissolved, and K is a constant that varies with structurg and operating condition. A method is developed for prediction of the k vaiue.

ETL 1110-2-239
15 Sep 78

APPENOIX - REFERENCES

1. Roesner, L. A., Norton, W. R., "A Nitrogen Gas (N_{2}) Model for the Lower Columbia River," Final Report, Watar Rescurces Engineers, Inc., Janu :971
2. Yevojevich, Y. M., "Diffusion of Slot Jets with Finite Orifice Length Hidth Ratios," Colorado State University Hydraulics Paper Ho. 2, Decempa 1965
3. Henry, H. Z., Discussion of "Diffusion of sumerged dess, paper to. 3to 20. 6at-094, Transactions of the American Soctey de citil Engtaers. 101. 115, 1950

ETL 1110-2-239
15 Sep 78
(

FGURE 2 - EyALUATON OF x

FIGURE 3 - SLUICENAY IN EXAMPLE PROBLEM

[^0]: 1/ Reprinted with the permission of the authors
 $\underline{2} /$ Hydraulic Engineer, Bureau of Reclamation, Denver, Colorado
 3/ Chief, Hydraulics Branch, Bureau of Reclamation, Denver, Colorado

